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Abstract

 

Microparticles are small membrane vesicles that are released from cells upon activation or
during apoptosis. Cellular microparticles in body fluids constitute a heterogeneous
population, differing in cellular origin, numbers, size, antigenic composition and functional
properties. Microparticles support coagulation by exposure of negatively charged
phospholipids and sometimes tissue factor, the initiator of coagulation 

 

in vivo

 

. Microparticles
may transfer bioactive molecules to other cells or microparticles, thereby stimulating cells
to produce cytokines, cell-adhesion molecules, growth factors and tissue factor, and
modulate endothelial functions. Microparticles derived from various cells, most notably
platelets but also leucocytes, lymphocytes, erythrocytes and endothelial cells, are present in
the circulation of healthy subjects. Rare hereditary syndromes with disturbances in
membrane vesiculation leading to a decreased numbers of microparticles clinically present
with a bleeding tendency. In contrast, elevated numbers of microparticles are encountered
in patients with a great variety of diseases with vascular involvement and hypercoagulability,
including disseminated intravascular coagulation, acute coronary syndromes, peripheral
arterial disease, diabetes mellitus and systemic inflammatory disease. Finally, microparticles
are a major component of human atherosclerotic plaques.

In view of their functional properties, cell-derived microparticles may be an important
intermediate in the cascade of cellular and plasmatic dysfunctions underlying the process of
atherogenesis.
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Introduction

 

Already in the 1940s it was known that human plasma and
serum contained a subcellular factor facilitating fibrin
formation [1,2]. It was not until 1967 when, using electron

microscopic techniques, Wolf demonstrated that this sub-
cellular factor consisted of small vesicles (‘microparticles’),
which were called ‘platelet dust’. These microparticles,
showed procoagulant activity, comparable to that of intact
platelets [3]. Their procoagulant activity was designated as
platelet factor 3 (PF3) [4]. Subsequently, it was shown that
(platelet-derived) microparticles (PMPs) were formed dur-
ing the attachment of platelets to the vascular wall 

 

in vitro

 

[5]. In recent years, the interest for microparticles has sub-
stantially increased, not only because of their procoagulant
properties but also because of their putative role in inflam-
matory processes and their ability to directly affect endothe-
lial functions (Fig. 1) [6–9]. Their suspected involvement in
clinical disease was demonstrated for the first time in patients
with idiopathic thrombocytopenic purpura (ITP) [10].

The majority of 

 

in vivo

 

 microparticles in blood is derived
from platelets [11], whereas microparticles from erythro-
cytes, granulocytes, monocytes, lymphocytes and endothe-
lial cells usually circulate at lower numbers. Interestingly,
significant differences exist between microparticle fractions
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or subpopulations found in the circulation of healthy sub-
jects [12,13] and those found in patients suffering from
various diseases with increased thromboembolic risk or
vascular damage, such as atherosclerotic vascular disease,
sepsis, diabetes mellitus, severe hypertension and end-stage
renal failure [14–22]. Also, microparticles constitute an
important component of the human atherosclerotic plaque
[23].

To summarize, microparticles are closely associated with
the presence and the possible development of atheroscle-
rotic and inflammatory vascular damage. In this review, we
describe the structure, detection, pathogenesis and charac-
teristics of microparticles. Finally, the possible clinical
relevance of microparticles will be discussed in the context
of various diseases.

 

Characterization of microparticles: size and 
composition

 

Platelet activation plays a key role in the development of
arterial thrombosis resulting in major clinical syndromes,
such as acute myocardial infarction. During platelets acti-
vation, vesiculation of parts of the plasma membrane occurs
leading to the formation of PMP, the size of which typically
ranges from 0·1 to 1·0 

 

µ

 

m. Platelets and other cells are
surrounded by a plasma membrane consisting of a phos-
pholipid bilayer, containing phosphatidylserine (PS),
phosphatidylethanolamine (PE), phosphatidylcholine (PC)
and sphingomyeline (SM). In unstimulated cells, the dis-
tribution of these phospholipids within the bilayer is asym-
metrical. The neutral (uncharged) phospholipids PC and
SM are primarily located in the outer (exoplasmic)
membrane leaflet, while the negatively charged PS and PE are
present within the inner (cytoplasmic) leaflet. The asym-
metrical distribution of phospholipids in the plasma mem-
brane is actively maintained by various enzymes, such as the
aminophospholipid-translocase or flippase [24]. During
cell activation or apoptosis, the asymmetrical distribution of
these phospholipids disappears. As a consequence, nega-
tively charged phospholipids such as PS and PE become
(surface) exposed. The intracellular mechanisms underlying
the release of microparticles are as yet not fully understood,
but they seem to be associated – among others – with the
inducing stimulus leading to the actual vesiculation. It is
now becoming apparent that the formation of micro-

particles is a highly regulated process: the phospholipid
composition of PMPs shows characteristics from intracellular
rather than from plasma membrane fractions and recent
studies in endothelial cells showed that constitutively
exposed proteins from these cells are hardly transmitted to
endothelial-cell-derived microparticles [25,26].

Microparticles expose various antigens, notably those
also exposed by their ‘parent’ cells, i.e. the cells from which
they are released. For instance, PMPs expose glycoproteins
(GP) Ib (CD42b), platelet-endothelium adhesion molecule-
1 (PECAM-1; CD31) and the fibrinogen receptor, the
integrin 

 

α

 

IIb

 

β

 

3 (GPIIb–IIIa). In addition, PMPs can
expose activation markers such as P-selectin (CD62P).
Similarly, microparticles from other cells can be character-
ized: examples are microparticles from erythrocytes that
stain for glycophorine A, granulocytic microparticles for
CD66, monocytic microparticles for CD14, lymphocytic
microparticles for CD4 and CD8 and endothelial-cell-
derived microparticles for CD31, CD34, CD51 (vitronectin),
CD62E, and CD146 (MUC18, S-Endo-1) [13,14,17–
22,26]. All these microparticles can also expose activation
markers that are characteristic of their respective ‘parent’ cell.

 

Detection of microparticles

 

Flowcytometry

 

Microparticles can be detected by flowcytometry in blood
samples or fractions there from, as well as in other body fluids
such as synovial fluid [6,27]. Using labelled antibodies against
cell-specific antigens and/or activation markers and annexin
V, a protein that binds specifically to negatively charged
phospholipids in the presence of calcium ions, microparticle
fractions or subpopulations can be quantified and concur-
rently their cellular origin as well as their ‘activation status’ can
be established. To correct for autofluorescence and binding
of antibodies to Fc-receptors, microparticles are also stained
with a (labelled) control antibody plus annexin V, but without
calcium ions. Of each event detected by the flowcytometer,
the size (forward scatter, FSC) and density (sidescatter, SSC)
are determined electronically, as well as the fluorescence in
various channels. Fluorescence reflects the amount of antibody
bound and therefore is an estimate for the amount of antigen
exposed on the membrane surface. Figure 2 illustrates the
visualization of PMPs by flowcytometry.

Figure 1 Formation and functional 
properties of cellular microparticles (MPs)
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Electron microscopy

 

Figure 3 shows scanning electron microscopy images of
unstimulated cultured human umbilical vein endothelial
cells (HUVECS) and the formation of microparticles upon
stimulation with interleukin-1

 

α

 

. The diameter of the vesicles
released by stimulated HUVECS ranges from 0·1 to 1·0 

 

µ

 

m.

 

Enzyme-linked immunosorbent assay

 

One of the most frequently used ELISAs to quantify cell-
derived microparticles employs a plate coated with annexin

V [7,28,29]. Upon addition of a (plasma) sample, micro-
particles present within this sample will bind to annexin V.
After washing, a cell-specific antibody can be added to
quantify numbers of cell-specific microparticles. Alternatively,
after washing the procoagulant activity of the (bound) micro-
particles can be determined using a prothrombinase assay.

 

Mechanisms of microparticle formation: 
activation and apoptosis

 

It is generally accepted that all eucaryotic cells release

Figure 2 Use of flowcytometry for 
microparticle analysis. Flowcytometric 
analysis of whole blood by size (forward 
scatter, FSC) and density (side scatter, 
SSC) predominantly yields erythrocytes 
(visible in the upper right of panel A); events 
staining positive for (labelled) antibody-
directed against platelet-antigen are 
platelets in region 2 (R2) (B), whereas R3 
contains larger events such as complexes of 
platelets or platelet-derived microparticles, 
and R1 contains events smaller than 
platelets, the PMPs. In cell-free plasma, 
microparticles can be analyzed after 
additional centrifugation (C–H). (D) 
Microparticles are stained with an anti-
GPIIIa (CD61) monoclonal antibody, as 
compared with a control antibody (C). 
Almost all events bind annexin V in the 
presence of calcium ions (F), but not in the 
absence of such ions (E). Double staining of 
microparticles with anti-CD61 plus annexin 
V in the presence of calcium ions allows 
visualization of PMPs exposing negatively 
charged phospholipids (H). As a control, 
microparticles are stained with annexin V in 
the absence of calcium ions and control 
IgG1 antibody (G; control).
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microparticles. Microparticle formation 

 

in vitro

 

 occurs
whenever a stimulus is applied which induces either cell
activation or apoptosis. To date, however, it is unclear
whether the mechanisms underlying microparticle forma-
tion are identical during these two conditions are identical.

 

Cell activation

 

Platelets can be activated by different agonists that bind to
specific receptors on the platelet membrane. Thus, stimuli
such as thrombin, collagen and adenosine diphosphate
(ADP) activate specific transmembrane receptors that transmit
signals into the cell. These signals induce changes in second
messenger concentrations which in turn modulate cellular
responses [6,7]. Stimulation of platelets by these agents not
only leads to platelet aggregation and secretion, but also
results in membrane vesiculation and the release of micro-
particles. Alternatively, agents, such as calcium ionophores,
trigger microparticle release by directly changing the
intracellular concentrations of second messenger molecules.
Platelet-derived microparticles are also formed during pro-
longed storage of platelets, or when platelets are exposed to
high shear-stress conditions 

 

in vitro

 

 [5]. The latter conditions
resemble those occurring 

 

in vivo

 

 at stenoses of the vascular tree.
Although the molecular mechanisms underlying micro-

particle formation are as yet unresolved, the increase in
intracellular levels of calcium ions, resulting in the activation
of enzymes such as calpain, play an important role [6,7].
Calpain degrades cytoskeletal proteins, and its inhibition
partly prevents collagen- and thrombin-induced micropar-
ticle formation [30].

 

Apoptosis

 

Programmed cell-death or apoptosis is associated with the
abolition of the phospholipid asymmetry of the plasma
membrane and condensation of the nucleus, followed by
DNA fragmentation and the release of apoptotic blebs or
microparticles [8]. The intracellular enzyme family of
caspases plays an important role in apoptosis [8]. The
irreversible step in which procaspase 3 (CPP32) is con-
verted into the active caspase-3 is regarded as fundamental
in the apoptotic process. Caspase-3 activates rho-associated
kinase (ROCK I) resulting in the release of apoptotic mem-
brane vesicles, which can also contain DNA fragments [31].

 

Functional characteristics of microparticles

 

The most frequently described characteristic of both 

 

in vitro

 

and 

 

in vivo

 

 microparticles is their procoagulant activity
[7,13,16,32]. Recent observations, however, also suggest
their involvement in inflammatory processes [27], in the
transfer of bioactive molecules to other cells and microparticles
[9] and the inhibition of endothelium-dependent vasodila-
tation [33,34]. Not all the properties of cellular microparticles
should necessarily be regarded as noxious: specific micro-
particle subpopulations may even prevent vascular damage.
Thus, 

 

in vitro

 

-generated PMPs were shown to enhance the
activation of protein C, thus facilitating the inhibition of
coagulation factors Va and VIIa and preventing thrombin
formation [35]. Other microparticle fractions were reported
to induce cellular growth, chemotaxis, apoptosis and the
outgrowth of transplanted haematopoetic stem cells [36,37].

The various functional characteristics of 

 

in vitro

 

-generated
microparticles as well as of those isolated from the circulation
of various patient populations will be discussed (see also
Table 1).

 

Microparticles and coagulation

 

Coagulation activation plays an essential role in the devel-
opment of atherothrombosis. Subjects with a high risk of
cardiovascular disease show various degrees of hypercoag-
ulability. Coagulation activation requires plasmatic coagu-
lation factors, calcium ions and a procoagulant membrane
surface. An essential characteristic of such a suitable surface
is the exposure of negatively charged phospholipids. As pre-
viously stated, the exposure of such phospholipids is one of
the characteristics of microparticles. Coagulation factors
bind, via their negative Gla-domains, to the negatively
charged phospholipids in the presence of calcium ions, thus
forming tenase- and prothrombinase-complexes. Platelet-
derived microparticles expose more binding sites for factors
Va, VIIIa, and IXa per unit of membrane surface area than
activated platelets. Thus, at least 

 

in vitro

 

, thrombin formation
is supported more efficiently by microparticle membranes than
by platelet membranes when corrected for unit surface area.

The procoagulant activity of microparticles can be quan-
tified using the thrombin generation test [13,14]. In this
assay, the conversion over time of a specific chromogenic
substrate by thrombin is measured photospectrometrically.
In this system, microparticles supply the procoagulant

Figure 3 Scanning electron microscope 
images showing unstimulated cultured 
human umbilical vein endothelial cells 
(A) and the formation of microparticles 
after stimulation of the cells with 
interleukin-1α (B).
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surface and a possible initiator of coagulation, e.g. tissue factor,
and plasma provides the necessary coagulation factors. By
adding calcium ions, (activated) coagulation factors can bind
to the (microparticle) membranes to initiate and/or facilitate
coagulation. In this assay, the generation of thrombin is
completely dependent on the presence of microparticles,
and in their absence no coagulation occurs.

 

In vivo

 

, coagulation is initiated by tissue factor, a trans-
membrane protein that binds factor VII(a) and catalyses its
autoactivation. In turn, the tissue factor/factor VIIa complex
directly activates factor X to factor Xa. Factor Xa, in the
presence of its cofactor Va, forms the prothrombinase
complex that converts factor II (prothrombin) into IIa

(thrombin). Alternatively, the tissue factor/factor VIIa com-
plex activates factor IX into factor IXa. Together with its
cofactor, factor VIIIa, factor IXa forms the tenase complex
that subsequently activates factor X into factor Xa. In this
system, there is an important role for coagulation factor XI.
Minute quantities of thrombin can activate factor XI into
factor XIa. Subsequently, factor XIa activates factor IX into
factor IXa, thereby enhancing the formation of thrombin.

 

In vitro

 

, microparticles can both initiate and propagate
coagulation [21,38,39]. However, the mechanisms by which

 

in vivo

 

 microparticles support coagulation 

 

ex vivo

 

 were
highly dependent on the clinical conditions. For instance,
thrombin formation by microparticles from blood of a
patient with meningococcal sepsis and diffuse intravas-
cular coagulation (DIC) was completely inhibited by anti-
bodies directed against either tissue factor or factor VII [17].
These antibodies also completely inhibited thrombin gen-
eration by microparticles from human pericardial blood, i.e.
blood that collects in the pericardial cavity during coronary
artery bypass grafting (CABG) [16]. In contrast, neither of
these antibodies inhibited thrombin generation initiated by
microparticles obtained from healthy subjects. Thrombin
generation by these microparticles as well as thrombin
generation by microparticles from patients with sepsis and
multiorgan failure was mediated by factor XI and in some
patients also by factor XII [13,18]. Only recently it was dis-
covered that also tissue factor-independent mechanisms are
able to initiate coagulation. One example is the binding of factor
X to the monocytic protein Mac-1 (CD11b/CD18) and the
subsequent activation of factor X into factor Xa by catepsin
G [40]. Possibly, microparticles may also use similar tissue
factor-independent mechanisms to initiate coagulation.

An important question is whether microparticles are
procoagulant 

 

in vivo

 

. This issue is not easily resolved, but
several lines of evidence suggest that microparticle-mediated
coagulation is indeed clinically relevant. First, micropar-
ticles from various patient populations support coagulation

 

in vitro

 

 [13,16–18]. Second, the presence of highly proco-
agulant, tissue-factor-exposing microparticles in certain
disease conditions coincided with strongly elevated levels
of 

 

in vivo

 

 coagulation activation markers, such as prothrom-
bin fragment 

 

F

 

1+2

 

 and thrombin-antithrombin complexes.
Examples are microparticles from a patient with fulminant
DIC and meningococcal septic shock, microparticles
from pericardial cavity blood during CABG, and micro-
particles from synovial fluid from patients with rheumatoid
arthritis [16,17,27]. Third, numerous studies demonstrated
an association between elevated numbers of microparticles
and the increased risk of thromboembolic complications
[10,19,21,41]. Fourth, an increased bleeding tendency and
decreased levels of circulating microparticles have been
described in several rare syndromes [42–44]. Finally, direct
infusion of artificial phospholipid vesicles in baboons caused
severe DIC [45], and systemic administration of micro-
particles in rats resulted in thrombus formation [46]. Taken
together, these data suggest that clinical presentation of
systemic hypercoagulation may involve microparticles
exposing coagulant tissue factor. Therefore, it may be of
interest to develop drugs that interfere with the mechanisms

Table 1 Characteristics of in vitro- and in vivo-generated 
microparticles

In vitro-generated platelet microparticles:
stimulate CD11b expression on leucocytes, leucocyte–leucocyte 
interactions, phagocytosis
induce CD11a/CD18 and CD11b/CD18 on monocytes, 
resulting in monocyte adhesion to endothelial cells
induce ICAM-1 exposure on endothelial cells, resulting in 
monocyte adhesion to endothelial cells
stimulate COX2-expression in monocytes and endothelial cells
stimulate thrombocyte aggregation, intracellular calcium flux, 
inositol phosphate formation
stimulate protein kinase C, mitogen-activated protein (MAP) 
kinases and stress (JNK) kinases
transcellular transfer of arachidonic acid, resulting in 
amplification and modulation of platelet activation
transfer of various cytokine- and chemokine-receptors to 
haematopoetic and malignant cells
transfer of CXCR4-receptors for HIV-1 virus to cells
enhance engraftment of transplanted bone marrow cells
enhance APC-catalysed inactivation of Factor Va
colocalize plasminogen-activator inhibitor-1 and vitronectin

In vivo-circulating platelet microparticles:
initiate and propagate coagulation/enhance thrombin formation
expose P-selectin
expose tissue factor
transfer tissue factor to other cells and cell-derived microparticles

In vitro-generated endothelial-cell microparticles:
induce monocyte adhesion to endothelial cells
activate neutrophils
initiate and propagate coagulation/enhance thrombin formation
expose matrix metalloproteinases-2 and -9, induce matrix 
degradation and angiogenesis

In vivo-circulating endothelial-cell microparticles:
inhibit endothelium-dependent vasodilation
initiate and propagate coagulation/enhance thrombin formation
are associated with type 1 diabetic microalbuminuria

In vitro-generated leucocyte microparticles:
expose tissue factor, transfer tissue factor to platelets and their 
microparticles
activate endothelial cells and stimulate the secretion of IL-6 via 
stress-associated signal routes (JNK1)

In vivo-circulating leucocyte microparticles:
are present in human atherosclerotic plaques, in close association 
with tissue factor
are associated with type 2 diabetic microvascular damage
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underlying the formation of these microparticles rather than
symptomatic treatment of the hypercoagulable state as such.

 

Microparticles and inflammation

 

Like coagulation, inflammatory processes underlie the
pathogenesis of atherothrombotic vascular disease [47].
Elevated plasma levels of acute-phase reactants and other
markers of inflammation occur in various high-risk patient
populations [14,39]. Microparticles can directly activate
and stimulate cells to produce inflammatory substances
mediators such as cytokines [48–50]. In addition, at least

 

in vitro

 

 microparticles mediate intercellular interactions [50–
52]. Finally, subpopulations of microparticles isolated from
human plasma expose C1q, C3 and C4, strongly suggesting
their direct involvement in activation of the complement
system [53]. Currently, the relation between cellular micro-
particles and C-reactive protein (CRP) is studied. This acute-
phase protein is known to bind to membranes and, in the
membrane-bound form, may activate the classical pathway
of the complement system, ultimately leading to vascular
damage.

Table 1 lists the reported cell–microparticle and micro-
particle–microparticle interactions. At present, however,
there is no direct evidence that microparticles are involved
in inflammatory disease 

 

in vivo

 

. Although elevated levels of
microparticle subpopulations are present in the circulation
of patients with inflammatory disease, both of infectious and
autoimmune origin, a causal relationship between micro-
particles and inflammatory processes cannot readily be
established, because cytokines trigger cells, thereby stimu-
lating the release of microparticles, whereas microparticles
trigger cells to produce and release cytokines [48]. There-
fore, it is as yet unclear whether cellular microparticles are
a cause or consequence of inflammatory processes and the
associated vascular damage.

 

Microparticles and endothelial-cell functions

 

In vitro

 

 microparticles adhere to endothelial cells and
subsequently stimulate these cells to produce cell-specific
adhesion-cell molecules, cytokines and tissue factor [9].
Also, 

 

in vivo

 

 microparticles were found to influence endo-
thelial functions 

 

ex vivo

 

: microparticles from patients with
acute coronary syndromes directly impaired endothelium-
dependent vasodilatation in rat aorta-rings, presumably
by inhibition of the nitric oxide (NO)-mediated signal
transduction [33]. Also microparticles from women with
preeclampsia impaired the endothelium-dependent vaso-
dilatation [34]. Several studies also suggest a relationship
between circulating microparticles and endothelial function.
Patients with complicated diabetes mellitus, who were treated
with a platelet aggregation inhibitor, lowered the numbers
of circulating PMPs and decreased plasma concentrations of
vascular cell adhesion molecule-1 (VCAM-1) and intercel-
lular cell adhesion molecule-1 (ICAM-1) [39]. Conversely,
stimulation of endothelial cells 

 

in vitro

 

 by TNF

 

α

 

 induced

the formation of microparticles exposing adhesion-cell
molecules, including ICAM-1, E-selectin, vitronectin-3 and
platelet-endothelial cell-adhesion molecule-1 (PECAM-1).
In patients with various systemic and autoimmune diseases
elevated levels of microparticles originating from endo-
thelial cells were found [54–56].

 

Microparticles and signal transduction, growth, 
angiogenesis and metastasis

 

Microparticles may expose adhesion-cell molecules, specif-
ically adhere to, e.g. endothelial cells, and stimulate these
cells to produce various intermediates, such as E-selectin
and tissue factor [36,50,57]. The actual ‘communication’
between microparticles and cells may occur through transfer
of bioactive molecules such as arachidonic acid. Thus,
microparticles treated with secretory phospholipase A

 

2

 

, an
acute-phase reactant, contained elevated levels of lysophos-
pholipids and arachidonic acid and such microparticles
could activate endothelial cells by the transfer of this ara-
chidonic acid [9,49,58].

In patients with type 2 diabetes we previously described
elevated numbers of microparticles from platelets, granulo-
cytes and lymphocytes that exposed tissue factor [14]. Both

 

in vitro

 

 and 

 

in vivo

 

 studies demonstrated the presence of
tissue factor-positive PMP subpopulations, which con-
currently expose antigens originating from granulocytes,
monocytes or lymphocytes, suggesting a possible transfer of
tissue factor by, as well as to, these PMP.

Platelet-derived microparticles have the ability to transfer
the CXCR4 receptor from CXCR4-positive to CXCR4-
negative cells [59]. This receptor is mandatory for the
HIV-1 virus to enter cells, suggesting a role for PMPs in the
dissemination of HIV-1 particles. Also, microparticles transfer
cytokine and chemokine receptors to haematopoetic, but
also to malignant cells, by which mechanism these vesicles
may modulate cellular activation, proliferation, survival,
apoptosis and chemotaxis [60]. Adherence of PMPs to
transplanted bone marrow cells stimulated their outgrowth,
which may be regarded as a beneficial effect of the PMP.
Conversely, in addition to activated platelets, PMPs are
involved in paraneoplastic thromboembolic complications
and metastasis. Only recently, matrix metalloproteinases-
2 and -9, enzymes that play a role in matrix degradation
and angiogenesis, were detected in microparticles of
endothelial origin [61].

Taken together, cellular microparticles may be carriers of
antigens and receptors, including tissue factor, E-selectin
and VCAM-1, all of which were previously regarded as ‘solu-
ble’ in plasma. Plasma concentrations of these substances
are widely used as measures of endothelial dysfunction in
human. By assessing the colocalization of these proteins
with cell-specific antigens on microparticles and by measur-
ing the plasma levels of these substances before and after
centrifugation (i.e. after removal of the microparticle frac-
tion), it becomes possible to determine the real cellular
origin of these antigens, which currently are all ascribed
to endothelial cells.
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Clinical relevance of cellular microparticles

 

During the last 5 years a growing number of public-
ations appeared reporting elevated numbers of micro-
particle subpopulations in association with various disease
states as well as studies investigating the composition
and functional characteristics of microparticles. To
date, however, it is unclear whether microparticles are a
cause or merely a consequence of metabolic and vascular
disease.

 

Platelet-derived microparticles

 

The clinical relevance of PMPs may be illustrated by the
rare hereditary Scott syndrome, a disease characterized by
a bleeding tendency and a decreased formation of PMPs
[42,62]. The diminished formation of PMPs is caused by a
signal transduction defect which diminishes the transmem-
brane migration and exposure of PS. Castaman’s disease
and Glanzmann’s thrombastenia are other rare syndromes
in which an increased bleeding tendency is associated with
a decreased release of PMPs [43,44]. Low numbers of cir-
culating microparticles were found in patients with sepsis
and these showed an inverse correlation with markers of

 

in vivo

 

 coagulation [18]. Conversely, elevated numbers of
PMPs were found in patients suffering from diseases asso-
ciated with an increased risk of thromboembolic processes
and vascular damage, including ITP [10], acute coronary
syndromes [15,19], acute cerebrovascular disease [41],
heparin-induced thrombopenia [38], peripheral arterial dis-
ease [63], complicated diabetes mellitus [39], severe hyper-
tension [20], end-stage renal disease [21], multiple sclerosis
[55] and malignancy [60]. In some studies the procoagulant

activity of the 

 

in vivo

 

 microparticles, predominantly PMPs,
was also demonstrated. In patients with uncomplicated
type 2 diabetes mellitus, we found elevated numbers of
tissue-factor-exposing PMPs [14]. Unexpectedly, this
microparticle-associated tissue factor did not show proco-
agulant activity, possibly because of its presence in the
‘encrypted’ state, in which it binds anti-tissue factor antibody
and factor VII/VIIa, but lacks procoagulant activity [64].
Previous studies showed that tissue-factor activity is cri-
tically dependent on the microenvironment within the
membrane [65]. Therefore, it was hypothesized that
microparticle-associated tissue factor from these patients
may play a role in other processes, such as angiogenesis,
growth and signal transduction.

 

Endothelial-cell microparticles

 

Increased numbers of microparticles from endothelial cells
were reported in patients with acute coronary syndromes
[19], confirming the pathophysiologic role of endothelial
injury in acute coronary events [66]. Also, high circulat-
ing levels of endothelial-cell microparticles were reported
in severe hypertension, thrombotic thrombocytopenic
purpura, systemic lupus erythematosus and multiple
sclerosis (Table 2). Decreased numbers of endothelial-cell
microparticles were measured in subjects with sepsis and
multiorgan failure. Some authors explain their occurrence
by apoptosis whereas others regard these vesicles as a result
of endothelial-cell activation. In a recent study, increased
levels of endothelial-cell microparticles were associated with
albuminuria in subjects with type 1 diabetes mellitus,
but not in those with type 2 diabetes [22]. We found
similar numbers of endothelial-cell-derived microparticles

Table 2 Circulating nonplatelet microparticles in diseases with vascular involvement

Cellular origin Disorder Microparticle numbers

Granulocytes sepsis/multiorgan failure ↑
type 2 diabetes mellitus* ↑
preeclampsia ↑

Monocytes atherosclerotic plaques ↑
type 2 diabetes mellitus ↑
lung cancer ↑

Endothelial cells systemic lupus erythematosus ↑
acute coronary syndromes ↑
congestive heart failure ↑
sepsis ↓
thrombotic thrombocytopenic purpura ↑
multiple sclerosis ↑
type 1 diabetes mellitus ↑
severe hypertension ↑

Lymphocytes HIV ↑
atherosclerotic plaques ↑
type 2 diabetes mellitus* ↑
preeclampsia ↑

*Proportion of granulocyte- and lymphocyte-derived microparticles that exposed tissue 
factor.
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in patients with uncomplicated type 2 diabetes and in
healthy controls [14]. To note, as in the studies published,
different endothelial-cell markers were used in various study
populations; the findings cannot be readily compared
[13,14,19,22,26,54,56].

Granulocyte, monocyte and lymphocyte 
microparticles

Table 2 shows the occurrence of various nonplatelet micro-
particles in human disease. Elevated numbers of granulo-
cyte-derived microparticles were reported in patients with
meningococcal sepsis, in patients with multiorgan failure
and in women with preeclampsia [17,18,34], suggesting
that the occurrence of such microparticles is associated with
infection and/or inflammation. High numbers of monocyte-
derived microparticles have thus far only been reported in
one patient suffering from meningococcal septic shock who
developed severe DIC [17]. These microparticles exposed
highly coagulant tissue factor. In patients with type 2 dia-
betes, monocyte-derived microparticles were associated
with plasma E-selectin levels and the highest microparticle
numbers were found in subjects with diabetic nephropathy
[67]. Elevated levels of lymphocyte-derived microparticles
(CD4+, CD8+) have been found in preeclamptic woman
and in HIV-infected patients, suggesting increased apoposis
of lymphocytes [34,38]. Finally, an interesting finding is
the presence of tissue factor in the vicinity of monocyte
and lymphocyte microparticles in human atherosclerotic
plaques [23]. In summary, the occurrence of microparticles
originating from white blood cell types is associated with
inflammation, infection and possibly endothelial dysfunc-
tion and the development of atherothrombosis. The relative
contribution of such microparticles to the development of
the afore-mentioned pathologies, however, remains to be
established.

Conclusions

Microparticles from various cell types – but predominantly
from thrombocytes – occur in the human circulation.
Elevated numbers of circulating microparticles are found
in patients who suffer from diseases associated with an
increased thromboembolic risk and vascular damage.
Microparticles initiate and propagate coagulation by expos-
ing negatively charged phospholipids on their membrane
surface. In addition, under certain conditions, microparti-
cles also expose tissue factor, the initiator of coagulation.
The clinical relevance of the presence of microparticles in
the circulation of healthy subjects is as yet unclear, but it
may be regarded as a reflection of the dynamics between
resting, activated and apoptotic cells. In addition, the num-
bers of circulating microparticles also reflect the result of
their production and clearance. In vascular disease states it
still remains to be elucidated whether microparticles are a
cause or a consequence of the condition, as disease-related

factors such as infectious agents, cytokines and metabolic
disturbances are known to trigger microparticle formation.
Still, it may be assumed that microparticles do contribute
to the severity of disease, as they can disseminate procoag-
ulant and proinflammatory activities throughout the body.
Therefore, microparticles may be viewed as part of a cas-
cade of reactions in response to a stimulus. This stimulus
that led to their generation determines their numbers, size,
biochemical composition and functional characteristics.

Although microparticle formation may be regarded as an
adaptive process, such as e.g. the classical inflammatory
response, an overshoot of this response, i.e. an excessive
release of microparticles, may become harmful to the organ-
ism and as such unwanted. Conversely, defective micro-
particle formation, in particular of PMPs, may result in an
increased bleeding tendency. Patients with a haemorrhagic
trait owing to congenital or acquired forms of platelet
abnormalities can be treated with plasma cryoprecipitate. The
therapeutic efficacy of cryoprecipitates is in part attributed
to their content of high concentrations of PMPs [68].

Various antiplatelet drugs, including the GPIIb/IIIa
receptor antagonist abciximab [69] and the cAMP phos-
phodiesterase inhibitor cilostazol [39], offer therapeutic
possibilities, as they reduce excessive PMP formation.
Short-term administration of vitamin C at a high dose
reduced the number of circulating endothelial-cell-derived
microparticles in patients with congestive heart failure [70].
The possible beneficial effect of antioxidants was recently
also demonstrated by an anecdotal observation, in which
consumption of a flavinoid-rich cocoa beverage reduced
circulating numbers of PMPs in healthy subjects [71].

Future research should provide insight into the factors
that induce microparticle formation and the molecular
mechanisms underlying the process of generation of these
vesicles, i.e. activation and apoptosis. Collectively, the data
obtained from these studies should provide answers to
the question as to whether cellular microparticles play a
causative role in the development of thromboembolic
complications and vascular damage in humans.
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